mirror of
https://github.com/electronicarts/CnC_Renegade.git
synced 2025-12-16 15:41:39 -05:00
Initial commit of Command & Conquer Renegade source code.
This commit is contained in:
261
Code/Tests/collide/oldcol.cpp
Normal file
261
Code/Tests/collide/oldcol.cpp
Normal file
@@ -0,0 +1,261 @@
|
||||
/*
|
||||
** Command & Conquer Renegade(tm)
|
||||
** Copyright 2025 Electronic Arts Inc.
|
||||
**
|
||||
** This program is free software: you can redistribute it and/or modify
|
||||
** it under the terms of the GNU General Public License as published by
|
||||
** the Free Software Foundation, either version 3 of the License, or
|
||||
** (at your option) any later version.
|
||||
**
|
||||
** This program is distributed in the hope that it will be useful,
|
||||
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
** GNU General Public License for more details.
|
||||
**
|
||||
** You should have received a copy of the GNU General Public License
|
||||
** along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "col.h"
|
||||
|
||||
|
||||
// The eight box vertices of the box at time zero are
|
||||
// center+extent[i]*basis[i]
|
||||
// center-extent[i]*basis[i]
|
||||
// for i = 0,1,2,3. The vertices after a time step of dt are
|
||||
// center+dt*velocity+extent[i]*basis[i]
|
||||
// center+dt*velocity-extent[i]*basis[i]
|
||||
// for i = 0,1,2,3.
|
||||
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
IntersectType BoxesIntersect (float dt, const Box& box0, const Box& box1)
|
||||
{
|
||||
// Comments indicate where additional speed is gained for orthonormal bases
|
||||
// for both boxes. If a box is known to be flat (a[i] = 0 for some i OR
|
||||
// b[j] = 0 for some j), then more terms can be eliminated.
|
||||
|
||||
const Vector* A = box0.basis;
|
||||
const Vector* B = box1.basis;
|
||||
const float* a = box0.extent;
|
||||
const float* b = box1.extent;
|
||||
|
||||
// memoized values for Dot(A[i],A[j]), Dot(A[i],B[j]), Dot(B[i],B[j])
|
||||
float AA[3][3], AB[3][3], BB[3][3];
|
||||
|
||||
// calculate difference of centers
|
||||
Vector C, V;
|
||||
Sub(box1.center,box0.center,C);
|
||||
Sub(box1.velocity,box0.velocity,V);
|
||||
|
||||
float ra, rb, rsum, u0, u1;
|
||||
|
||||
// L = A0
|
||||
AA[0][0] = Dot(A[0],A[0]); // = 1 for orthonormal basis
|
||||
AA[0][1] = Dot(A[0],A[1]); // = 0 for orthonormal basis
|
||||
AA[0][2] = Dot(A[0],A[2]); // = 0 for orthonormal basis
|
||||
AB[0][0] = Dot(A[0],B[0]);
|
||||
AB[0][1] = Dot(A[0],B[1]);
|
||||
AB[0][2] = Dot(A[0],B[2]);
|
||||
|
||||
ra = FABS(a[0]*AA[0][0])+FABS(a[1]*AA[0][1])+FABS(a[2]*AA[0][2]);
|
||||
// = FABS(a[0]) for orthonormal basis
|
||||
rb = FABS(b[0]*AB[0][0])+FABS(b[1]*AB[0][1])+FABS(b[2]*AB[0][2]);
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,A[0]);
|
||||
u1 = u0+dt*Dot(V,A[0]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA0;
|
||||
|
||||
// L = A1
|
||||
AA[1][1] = Dot(A[1],A[1]); // = 1 for orthonormal basis
|
||||
AA[1][2] = Dot(A[1],A[2]); // = 0 for orthonormal basis
|
||||
AB[1][0] = Dot(A[1],B[0]);
|
||||
AB[1][1] = Dot(A[1],B[1]);
|
||||
AB[1][2] = Dot(A[1],B[2]);
|
||||
ra = FABS(a[0]*AA[0][1])+FABS(a[1]*AA[1][1])+FABS(a[2]*AA[1][2]);
|
||||
// = FABS(a[1]) for orthonormal basis
|
||||
rb = FABS(b[0]*AB[1][0])+FABS(b[1]*AB[1][1])+FABS(b[2]*AB[1][2]);
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,A[1]);
|
||||
u1 = u0+dt*Dot(V,A[1]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA1;
|
||||
|
||||
// L = A2
|
||||
AA[2][2] = Dot(A[2],A[2]); // = 1 for orthonormal basis
|
||||
AB[2][0] = Dot(A[2],B[0]);
|
||||
AB[2][1] = Dot(A[2],B[1]);
|
||||
AB[2][2] = Dot(A[2],B[2]);
|
||||
ra = FABS(a[0]*AA[0][2])+FABS(a[1]*AA[1][2])+FABS(a[2]*AA[2][2]);
|
||||
// = FABS(a[2]) for orthonormal basis
|
||||
rb = FABS(b[0]*AB[2][0])+FABS(b[1]*AB[2][1])+FABS(b[2]*AB[2][2]);
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,A[2]);
|
||||
u1 = u0+dt*Dot(V,A[2]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA2;
|
||||
|
||||
// L = B0
|
||||
BB[0][0] = Dot(B[0],B[0]); // = 1 for orthonormal basis
|
||||
BB[0][1] = Dot(B[0],B[1]); // = 0 for orthonormal basis
|
||||
BB[0][2] = Dot(B[0],B[2]); // = 0 for orthonormal basis
|
||||
ra = FABS(a[0]*AB[0][0])+FABS(a[1]*AB[1][0])+FABS(a[2]*AB[2][0]);
|
||||
rb = FABS(b[0]*BB[0][0])+FABS(b[1]*BB[0][1])+FABS(b[2]*BB[0][2]);
|
||||
// = FABS(b[0]) for orthonormal basis
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,B[0]);
|
||||
u1 = u0+dt*Dot(V,B[0]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itB0;
|
||||
|
||||
// L = B1
|
||||
BB[1][1] = Dot(B[1],B[1]); // = 1 for orthonormal basis
|
||||
BB[1][2] = Dot(B[1],B[2]); // = 0 for orthonormal basis
|
||||
ra = FABS(a[0]*AB[0][1])+FABS(a[1]*AB[1][1])+FABS(a[2]*AB[2][1]);
|
||||
rb = FABS(b[0]*BB[0][1])+FABS(b[1]*BB[1][1])+FABS(b[2]*BB[1][2]);
|
||||
// = FABS(b[1]) for orthonormal basis
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,B[1]);
|
||||
u1 = u0+dt*Dot(V,B[1]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itB1;
|
||||
|
||||
// L = B2
|
||||
BB[2][2] = Dot(B[2],B[2]); // = 1 for orthonormal basis
|
||||
ra = FABS(a[0]*AB[0][2])+FABS(a[1]*AB[1][2])+FABS(a[2]*AB[2][2]);
|
||||
rb = FABS(b[0]*BB[0][2])+FABS(b[1]*BB[1][2])+FABS(b[2]*BB[2][2]);
|
||||
// = FABS(b[2]) for orthonormal basis
|
||||
rsum = ra+rb;
|
||||
u0 = Dot(C,B[2]);
|
||||
u1 = u0+dt*Dot(V,B[2]);
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itB2;
|
||||
|
||||
// check separating axes which are cross products of box edges
|
||||
float Ainv[3][3], coeff[3][3];
|
||||
Invert3x3(A,Ainv);
|
||||
// Ainv = Transpose(A) for orthonormal basis, no need to invert
|
||||
MultiplyMM(B,Ainv,coeff);
|
||||
// coeff[i][j] = AB[j][i] for orthonormal basis, no need to multiply
|
||||
|
||||
// memoize minors of coefficient matrix
|
||||
float minor[3][3];
|
||||
|
||||
// difference of centers in A-basis
|
||||
Vector d0, d1, product;
|
||||
MultiplyVM(C,Ainv,d0); // Ainv = Transpose(A) for orthonormal basis
|
||||
MultiplyVM(V,Ainv,d1); // Ainv = Transpose(A) for orthonormal basis
|
||||
ScalarMult(dt,d1,product);
|
||||
Add(d0,product,d1);
|
||||
|
||||
// L = A0xB0
|
||||
minor[0][1] = coeff[0][1]*coeff[2][2]-coeff[2][1]*coeff[0][2];
|
||||
// = -coeff[1][0] for orthonormal bases
|
||||
minor[0][2] = coeff[0][1]*coeff[1][2]-coeff[1][1]*coeff[0][2];
|
||||
// = +coeff[2][0] for orthonormal bases
|
||||
ra = FABS(a[1]*coeff[0][2])+FABS(a[2]*coeff[0][1]);
|
||||
rb = FABS(b[1]*minor[0][2])+FABS(b[2]*minor[0][1]);
|
||||
// = FABS(b[1]*coeff[2][0])+FABS(b[2]*coeff[1][0]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[2]*coeff[1][0]-d0[1]*coeff[2][0];
|
||||
u1 = d1[2]*coeff[1][0]-d1[1]*coeff[2][0];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA0B0;
|
||||
|
||||
// L = A0xB1
|
||||
minor[0][0] = coeff[1][1]*coeff[2][2]-coeff[2][1]*coeff[1][2];
|
||||
// = +coeff[0][0] for orthonormal bases
|
||||
ra = FABS(a[1]*coeff[1][2])+FABS(a[2]*coeff[1][1]);
|
||||
rb = FABS(b[0]*minor[0][2])+FABS(b[2]*minor[0][0]);
|
||||
// = FABS(b[0]*coeff[2][0])+FABS(b[2]*coeff[0][0]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[2]*coeff[1][1]-d0[1]*coeff[1][2];
|
||||
u1 = d1[2]*coeff[1][1]-d1[1]*coeff[1][2];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA0B1;
|
||||
|
||||
// L = A0xB2
|
||||
ra = FABS(a[1]*coeff[2][2])+FABS(a[2]*coeff[2][1]);
|
||||
rb = FABS(b[0]*minor[0][1])+FABS(b[1]*minor[0][0]);
|
||||
// = FABS(b[0]*coeff[1][0])+FABS(b[1]*coeff[0][0]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[2]*coeff[2][1]-d0[1]*coeff[2][2];
|
||||
u1 = d1[2]*coeff[2][1]-d1[1]*coeff[2][2];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA0B2;
|
||||
|
||||
// L = A1xB0
|
||||
minor[1][1] = coeff[0][0]*coeff[2][2]-coeff[2][0]*coeff[0][2];
|
||||
// = +coeff[1][1] for orthonormal bases
|
||||
minor[1][2] = coeff[0][0]*coeff[1][2]-coeff[1][0]*coeff[0][2];
|
||||
// = -coeff[2][1] for orthonormal bases
|
||||
ra = FABS(a[0]*coeff[0][2])+FABS(a[2]*coeff[0][0]);
|
||||
rb = FABS(b[1]*minor[1][2])+FABS(b[2]*minor[1][1]);
|
||||
// = FABS(b[1]*coeff[2][1])+FABS(b[2]*coeff[1][1]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[0]*coeff[0][2]-d0[2]*coeff[0][0];
|
||||
u1 = d1[0]*coeff[0][2]-d1[2]*coeff[0][0];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA1B0;
|
||||
|
||||
// L = A1xB1
|
||||
minor[1][0] = coeff[1][0]*coeff[2][2]-coeff[2][0]*coeff[1][2];
|
||||
// = -coeff[0][1] for orthonormal bases
|
||||
ra = FABS(a[0]*coeff[1][2])+FABS(a[2]*coeff[1][0]);
|
||||
rb = FABS(b[0]*minor[1][2])+FABS(b[2]*minor[1][0]);
|
||||
// = FABS(b[0]*coeff[2][1])+FABS(b[2]*coeff[0][1]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[0]*coeff[1][2]-d0[2]*coeff[1][0];
|
||||
u1 = d1[0]*coeff[1][2]-d1[2]*coeff[1][0];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA1B1;
|
||||
|
||||
// L = A1xB2
|
||||
ra = FABS(a[0]*coeff[2][2])+FABS(a[2]*coeff[2][0]);
|
||||
rb = FABS(b[0]*minor[1][1])+FABS(b[1]*minor[1][0]);
|
||||
// = FABS(b[0]*coeff[1][1])+FABS(b[1]*coeff[0][1]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[0]*coeff[2][2]-d0[2]*coeff[2][0];
|
||||
u1 = d1[0]*coeff[2][2]-d1[2]*coeff[2][0];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA1B2;
|
||||
|
||||
// L = A2xB0
|
||||
minor[2][1] = coeff[0][0]*coeff[2][1]-coeff[2][0]*coeff[0][1];
|
||||
// = -coeff[2][1] for orthonormal bases
|
||||
minor[2][2] = coeff[0][0]*coeff[1][1]-coeff[1][0]*coeff[0][1];
|
||||
// = +coeff[2][2] for orthonormal bases
|
||||
ra = FABS(a[0]*coeff[0][1])+FABS(a[1]*coeff[0][0]);
|
||||
rb = FABS(b[1]*minor[2][2])+FABS(b[2]*minor[2][1]);
|
||||
// = FABS(b[1]*coeff[2][2])+FABS(b[2]*coeff[1][2]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[1]*coeff[0][0]-d0[0]*coeff[0][1];
|
||||
u1 = d1[1]*coeff[0][0]-d1[0]*coeff[0][1];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA2B0;
|
||||
|
||||
// L = A2xB1
|
||||
minor[2][0] = coeff[1][0]*coeff[2][1]-coeff[2][0]*coeff[1][1];
|
||||
// = +coeff[0][2] for orthonormal bases
|
||||
ra = FABS(a[0]*coeff[1][1])+FABS(a[1]*coeff[1][0]);
|
||||
rb = FABS(b[0]*minor[2][2])+FABS(b[2]*minor[2][0]);
|
||||
// = FABS(b[0]*coeff[2][2])+FABS(b[2]*coeff[0][2]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[1]*coeff[1][0]-d0[0]*coeff[1][1];
|
||||
u1 = d1[1]*coeff[1][0]-d1[0]*coeff[1][1];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA2B1;
|
||||
|
||||
// L = A2xB2
|
||||
ra = FABS(a[0]*coeff[2][1])+FABS(a[1]*coeff[2][0]);
|
||||
rb = FABS(b[0]*minor[2][1])+FABS(b[1]*minor[2][0]);
|
||||
// = FABS(b[0]*coeff[1][2])+FABS(b[1]*coeff[0][2]) for orthonormal bases
|
||||
rsum = ra+rb;
|
||||
u0 = d0[1]*coeff[2][0]-d0[0]*coeff[2][1];
|
||||
u1 = d1[1]*coeff[2][0]-d1[0]*coeff[2][1];
|
||||
if ((u0 > rsum && u1 > rsum) || (u0 < -rsum && u1 < -rsum) )
|
||||
return itA2B2;
|
||||
|
||||
return itIntersects;
|
||||
}
|
||||
Reference in New Issue
Block a user