mirror of
https://github.com/electronicarts/CnC_Renegade.git
synced 2025-12-16 15:41:39 -05:00
Initial commit of Command & Conquer Renegade source code.
This commit is contained in:
246
Code/WWMath/plane.h
Normal file
246
Code/WWMath/plane.h
Normal file
@@ -0,0 +1,246 @@
|
||||
/*
|
||||
** Command & Conquer Renegade(tm)
|
||||
** Copyright 2025 Electronic Arts Inc.
|
||||
**
|
||||
** This program is free software: you can redistribute it and/or modify
|
||||
** it under the terms of the GNU General Public License as published by
|
||||
** the Free Software Foundation, either version 3 of the License, or
|
||||
** (at your option) any later version.
|
||||
**
|
||||
** This program is distributed in the hope that it will be useful,
|
||||
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
** GNU General Public License for more details.
|
||||
**
|
||||
** You should have received a copy of the GNU General Public License
|
||||
** along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* $Header: /Commando/Code/wwmath/plane.h 16 5/05/01 5:48p Jani_p $ */
|
||||
/***********************************************************************************************
|
||||
*** Confidential - Westwood Studios ***
|
||||
***********************************************************************************************
|
||||
* *
|
||||
* Project Name : Voxel Technology *
|
||||
* *
|
||||
* File Name : PLANE.H *
|
||||
* *
|
||||
* Programmer : Greg Hjelstrom *
|
||||
* *
|
||||
* Start Date : 03/17/97 *
|
||||
* *
|
||||
* Last Update : March 17, 1997 [GH] *
|
||||
* *
|
||||
*---------------------------------------------------------------------------------------------*
|
||||
* Functions: *
|
||||
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma once
|
||||
#endif
|
||||
|
||||
#ifndef PLANE_H
|
||||
#define PLANE_H
|
||||
|
||||
#include "always.h"
|
||||
#include "vector3.h"
|
||||
#include "sphere.h"
|
||||
|
||||
/*
|
||||
** PlaneClass
|
||||
**
|
||||
** 3D-planes. This class uses the Normal+Distance description of a plane.
|
||||
** The relationship for all points (p) on the plane is given by:
|
||||
**
|
||||
** N.X * p.X + N.Y * p.Y + N.Z * p.Z = D
|
||||
**
|
||||
** BEWARE, if you are used to the Ax + By + Cz + D = 0 description, the
|
||||
** sign of the D value is inverted.
|
||||
*/
|
||||
|
||||
class PlaneClass
|
||||
{
|
||||
public:
|
||||
|
||||
enum { FRONT = 0, BACK, ON };
|
||||
|
||||
Vector3 N; // Normal of the plane
|
||||
float D; // Distance along the normal from the origin
|
||||
|
||||
PlaneClass(void) : N(0.0f,0.0f,1.0f), D(0.0f) { }
|
||||
|
||||
/*
|
||||
** Plane initialization:
|
||||
** a,b,c,d - explicitly set the four coefficients (note the sign of d!)
|
||||
** normal,dist - explicitly set the normal and distance
|
||||
** normal,point - compute plane with normal, containing point
|
||||
** p1,p2,p3 - compute plane containing three points
|
||||
*/
|
||||
PlaneClass(float nx,float ny,float nz,float dist);
|
||||
PlaneClass(const Vector3 & normal,float dist);
|
||||
PlaneClass(const Vector3 & normal,const Vector3 & point);
|
||||
PlaneClass(const Vector3 & point1,const Vector3 & point2,const Vector3 & point3);
|
||||
|
||||
inline void Set(float a,float b,float c,float d);
|
||||
inline void Set(const Vector3 & normal,float dist);
|
||||
inline void Set(const Vector3 & normal,const Vector3 & point);
|
||||
inline void Set(const Vector3 & point1,const Vector3 & point2,const Vector3 & point3);
|
||||
|
||||
bool Compute_Intersection(const Vector3 & p0,const Vector3 & p1,float * set_t) const;
|
||||
bool In_Front(const Vector3 & point) const;
|
||||
bool In_Front(const SphereClass & sphere) const;
|
||||
bool In_Front_Or_Intersecting(const SphereClass & sphere) const;
|
||||
|
||||
static void Intersect_Planes(const PlaneClass & a, const PlaneClass & b, Vector3 *line_dir, Vector3 *line_point);
|
||||
};
|
||||
|
||||
inline PlaneClass::PlaneClass(float nx,float ny,float nz,float dist)
|
||||
{
|
||||
Set(nx,ny,nz,dist);
|
||||
}
|
||||
|
||||
inline PlaneClass::PlaneClass(const Vector3 & normal,float dist)
|
||||
{
|
||||
Set(normal,dist);
|
||||
}
|
||||
|
||||
inline PlaneClass::PlaneClass(const Vector3 & normal,const Vector3 & point)
|
||||
{
|
||||
Set(normal,point);
|
||||
}
|
||||
|
||||
inline PlaneClass::PlaneClass(const Vector3 & point1, const Vector3 & point2, const Vector3 & point3)
|
||||
{
|
||||
Set(point1,point2,point3);
|
||||
}
|
||||
|
||||
inline void PlaneClass::Set(float a,float b,float c,float d)
|
||||
{
|
||||
N.X = a;
|
||||
N.Y = b;
|
||||
N.Z = c;
|
||||
D = d;
|
||||
}
|
||||
|
||||
inline void PlaneClass::Set(const Vector3 & normal,float dist)
|
||||
{
|
||||
N = normal;
|
||||
D = dist;
|
||||
}
|
||||
|
||||
inline void PlaneClass::Set(const Vector3 & normal,const Vector3 & point)
|
||||
{
|
||||
N = normal;
|
||||
D = Vector3::Dot_Product(normal , point);
|
||||
}
|
||||
|
||||
|
||||
inline void PlaneClass::Set(const Vector3 & point1, const Vector3 & point2, const Vector3 & point3)
|
||||
{
|
||||
N = Vector3::Cross_Product((point2 - point1), (point3 - point1));
|
||||
if (N != Vector3(0.0f, 0.0f, 0.0f)) {
|
||||
// Points are not colinear. Normalize N and calculate D.
|
||||
N.Normalize();
|
||||
D = N * point1;
|
||||
} else {
|
||||
// They are colinear - return default plane (constructors can't fail).
|
||||
N = Vector3(0.0f, 0.0f, 1.0f);
|
||||
D = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool PlaneClass::Compute_Intersection(const Vector3 & p0,const Vector3 & p1,float * set_t) const
|
||||
{
|
||||
float num,den;
|
||||
den = Vector3::Dot_Product(N,p1-p0);
|
||||
|
||||
/*
|
||||
** If the denominator is zero, the ray is parallel to the plane
|
||||
*/
|
||||
if (den == 0.0f) {
|
||||
return false;
|
||||
}
|
||||
|
||||
num = -(Vector3::Dot_Product(N,p0) - D);
|
||||
|
||||
*set_t = num/den;
|
||||
|
||||
/*
|
||||
** If t is not between 0 and 1, the line containing the segment intersects
|
||||
** the plane but the segment does not
|
||||
*/
|
||||
if ((*set_t < 0.0f) || (*set_t > 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool PlaneClass::In_Front(const Vector3 & point) const
|
||||
{
|
||||
float dist = Vector3::Dot_Product(point,N);
|
||||
return (dist > D);
|
||||
}
|
||||
|
||||
// This function returns true if the sphere is in front of the plane.
|
||||
inline bool PlaneClass::In_Front(const SphereClass & sphere) const
|
||||
{
|
||||
float dist = Vector3::Dot_Product(sphere.Center,N);
|
||||
return ((dist - D) >= sphere.Radius);
|
||||
}
|
||||
|
||||
// This function will return 1 if any part of the sphere is in front of the plane.
|
||||
// (i.e. if the sphere is entirely in front of the plane or if it intersects the plane).
|
||||
inline bool PlaneClass::In_Front_Or_Intersecting(const SphereClass & sphere) const
|
||||
{
|
||||
float dist = Vector3::Dot_Product(sphere.Center , N);
|
||||
return ((D - dist) < sphere.Radius);
|
||||
}
|
||||
|
||||
inline void PlaneClass::Intersect_Planes(const PlaneClass & a, const PlaneClass & b, Vector3 *line_dir, Vector3 *line_point)
|
||||
{
|
||||
// Method used is from "plane-to-plane intersection", Graphics Gems III, pp. 233-235.
|
||||
|
||||
// Find line of intersection. First find direction vector of line:
|
||||
Vector3::Cross_Product(a.N, b.N, line_dir);
|
||||
|
||||
// Now find point on line. How we do it depends on what the largest coordinate of the
|
||||
// direction vector is.
|
||||
Vector3 abs_dir = *line_dir;
|
||||
abs_dir.Update_Max(-abs_dir);
|
||||
if (abs_dir.X > abs_dir.Y) {
|
||||
if (abs_dir.X > abs_dir.Z) {
|
||||
// X largest
|
||||
float ool = 1.0f / line_dir->X;
|
||||
line_point->Y = (b.N.Z * a.D - a.N.Z * b.D) * ool;
|
||||
line_point->Z = (a.N.Y * b.D - b.N.Y * a.D) * ool;
|
||||
line_point->X = 0.0f;
|
||||
} else {
|
||||
// Z largest
|
||||
float ool = 1.0f / line_dir->Z;
|
||||
line_point->X = (b.N.Y * a.D - a.N.Y * b.D) * ool;
|
||||
line_point->Y = (a.N.X * b.D - b.N.X * a.D) * ool;
|
||||
line_point->Z = 0.0f;
|
||||
}
|
||||
} else {
|
||||
if (abs_dir.Y > abs_dir.Z) {
|
||||
// Y largest
|
||||
float ool = 1.0f / line_dir->Y;
|
||||
line_point->Z = (b.N.X * a.D - a.N.X * b.D) * ool;
|
||||
line_point->X = (a.N.Z * b.D - b.N.Z * a.D) * ool;
|
||||
line_point->Y = 0.0f;
|
||||
} else {
|
||||
// Z largest
|
||||
float ool = 1.0f / line_dir->Z;
|
||||
line_point->X = (b.N.Y * a.D - a.N.Y * b.D) * ool;
|
||||
line_point->Y = (a.N.X * b.D - b.N.X * a.D) * ool;
|
||||
line_point->Z = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize direction vector (we do it here because we needed the non-normalized version to
|
||||
// find the point).
|
||||
line_dir->Normalize();
|
||||
}
|
||||
|
||||
#endif /*PLANE_H*/
|
||||
Reference in New Issue
Block a user